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INTRODUCTION

The idea of estimating the state of a system based on observed data has
been the focal point of much research. The concept of least squares and curve
fitting was introduced by Gauss1 in the early 1800s. 1In more recent times,
Norbert w1ener2 was asked to solve an important specific World War II problem:
“How can optimum properties for servamechanisms be formulated and specified?”
Wiener formulated a general solution to this problem based on rigorous proba-
bilistic approaches. Among his works, "The Wiener Filter" is widely acclaimed
today as a cornerstone of modern estimation theory. Over the past decade and
a half, modern sequential estimation theory has been coming of age. xalman3
and Kalman and Bucy4 brought modern estimation theory into the limelight with
their historical publications, "A New Approach to Linear Filtering and Pre-
diction Theory" and "New Results in Linear Filtering and Prediction Theory."
Scientists, engineers, statisticians, mathematicians, and technical personnel
faced with the problem of estimating the behavior or monitoring the state
variables of a physical system find themselves relying heavily on modern
estimation theory. The problem is not an easy one in that the choice of the
estimation technique, in many cases, is problem-dependent. There are many
criteria available to specify the methodology for estimating a parameter or
variable. Ho and Lees discuss three choices: a) most probable estimate; b)

conditional mean estimate; and c¢) minimax estimate. Jacquot6 presents a

1. Gauss, K. F., Theory of Motion of the Heavenly Bodies, Dover, 1963.

2. Wiener, N., The Extrapolation, Interpolation, and Smoothing of Stationary
Time Series with Engineering Applications, MIT Press, 1949.

3. Kalman, R. E., A New Approach to Linear Filtering and Prediction Theory,

Trans ASME, (Journal of Basic Engineering) ser D, vol 82, pp 35-45, March
1960.

4. Kalman, R. E., and R. S. Bucy, New Results in Linear Filtering and Pre-
diction Theory, Trans ASME, (Journal of Basic Engineering), ser D, vol
83, pp 95-108, March 1961.

5. Ho, V. C., and R. C. K. Lee, A Bayesian Approach to Problems in Sto-
chastic Estimation and Control, IEEE Trans Automatic Control, vol AC-9,
pp 333-339, October 1969.

6. Jacquot, R. G., Modern Digital Control, Marcel Dekker, Inc, 1981.
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detailed derivation of the classical discrete-time vector Kalman filter where
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the system of interest is governed by the stochastic matrix-vector difference

equation
i x(k + 1) = Ax(k) + w(k) + Bu(k) (1)
! with the measurement process defined by
-
N z(k) = Hx(K) + v(k). (2)

In equation (1), x(k) is an n X 1 vector; A is an n X n state transition

'
TR
ﬁ: matrix; B is an n X j distribution matrix; and w(k) and u(k) are n X 1 and j X
Ef: 1 vectors, respectively. The stochastic sequence w(k) is defined as the state

or process noise. In equation (2), the measurement equation, z(k) is an r X 1
vector of observations, H is an r X n measurement matrix, and v(k) is the r X

1 vector of measurement noise.

‘e e
s faatsita. s

s

The assumptions will be made that the noises w(k) and v(k) are sta-
tionary, Gaussian random sequences. The problem is to obtain the best esti-

mate of x(k) such that the conditional mean square error
I = 1/2 E[X (k) %(k)|Z5) (3)

is minimized. The estimation error x(k) is given as
x(k) = x(k) = %(k). (4)

The notation zk 4 {z(1), 2(2), +++, 2(k)} is used to represent the past

L5 2 i
.L.\__'\_-.;.:’L' 3

&

observation or measurement set. The vector X(k) is the estimate of the true
vector x(k). The conditional mean square error of (3) is conditional on the
past observations or measurements. The estimation process is formalized in

the following algorithm:

x(k) = AR(k - 1) + g + Bu(k ~ 1) (s)
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B(k) = aB(k - 1)AT + Q. (6)

Obgservation Residual:

-
'y "}

TR R

- y(k) = z(k) - Hx(k). (7)
<

'.j Kalman Gain:

- K(k) = B(k) H [HB(K)H® + R] . (8)

Estimation Equations:

Measurement update-

R(k) = x(k) + K(k)[y(k) - r - HBu(k -~ 1) - Hq) (9)

2
s

N
3 Bx) = Bx) - k(O)HB(K). (10)
Y
’ A sequence which is of extreme importance in the field of estimation is
& termed the innovations sequence and is defined as the observation residual
; given by equation (7).
s
B This development of the estimation problem is the classical problem for
? known statistics; ie, R and Q are known quantities; also, the noise sequences
: a have the properties
b
? E(v(k)] = r (11)
and
1
E(w(k)] = q. (12)
:
2 3

Covariance update-
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The classical_problem also assumes that if the system is driven by a deter-

ministic forcing function, it is completely known for all time.

The noise covariance matrix Q is defined by
Q=E {[w(k) - q] [w(k) - q]T} (13)

where w(k) is the randam forcing sequence of expression (1) and q as defined
in relation (12), wnere the mean has been assumed not to be a function of time

or k. The observation noise covariance matrix R is given as
T
R=E {[v(k) - r] [v(k) = r] } (14)

where v(k) is the measurement noise sequence and r is the expected value of
v(k).

Figure 1 presents a block diagram of a system model, measurement system,
and discrete Kalman filter. The gystem model is a discrete representation of
a continuous system being observed at discrete times by a measurement system.

The assumptions are that u(k) and w(k) are constant over the sampling inter-

val; ie,

wit) = w(k); kTS t <(k + 1)T (15)
and

u(t) = u(k); kT< t <(k + 1)T (16)

where T is the sampling interval.
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Figure 1. System model and conventional discrete Kalman filter.

A further assumption is that knowledge of the forcing function exists; thus
the Kalman filter, as illustrated in figure 1, reflects this knowledge. Con-
sider now the case where a system is being forced by forcing functions u(k)

and w(k) and the noise corrupted output is observed by a sensor. The deter-

ministic forcing function, u(k), is fast varying with respect to time. It is
desired to formulate estimates of the value of the state variables in a timely
manner by using a Kalman filter; however, for this case, knowledge of the
system forcing function, u(k), is unknown to the filter. A problem of equal
importance is the case where the statistics of the process noise, w(k), are
unknown. An excellent treatment of estimation in the presence of unknown
noise statistics is presented in Myers and Tapley7. Empirical estimators are
developed in reference (7) which estimate the noise statistics.

For the case at hand, state estimation without knowledge of the deter-
. ministic forcing functions, several modifications are incorporated into the

estimation process. These include adaptive weighting of the elements of the

7. Myers, K. A. and B. D. Tapley, Adaptive Sequential Estimation with
Unknown Noise Statistics, IEEE Trans Automatic Control, vol AC-21,
pp 520-523, August 1976.
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conventional Kalman gain and covariance matrices, as well as robust statis-
tical smoothing of the estimates made by the adaptive Kalman filter using the
modified gain and covariance matrices. Figure 2 illustrates the estimation
process with the modifications incorporated. The assumptions are that the
noises w(k) and v(k) are stationary, Gaussian, random sequences. The modified
gain matrix A[K(k)] is defined in the next section as well as the robust

statistical smoothing procedure.

r_____-__-__r-____r--_-__-f__-m“_l__---_7
' : " ADAPTIVE | "
| 1 | WEIGHTING 0
wik) vik) ! \
: + ! + | ! |
' ~ [} A,
™ + x{k + +o + x (k) ROBUST | x*(k}
._'q 8 h) DELAY H > ' b A(K(k)) b SMOOTHER '—->
| + : 2lk)}- + | \
I A I | H [e=—HAleoeLavied | |
| ! x(k) { STATISTICAL |
LD_Y_N&MLC SYSTEM _ _ _ MEASUREMENTS ADAPTIVE ESTIMATOR L _SMOOTHING :

Figure 2. Adaptive robust estimation.

Two concepts are investigated in this paper; 1) adaptive weight functions
for the Kalman filter gain and error covariance matrices, and 2) robust
smoothing of the estimated state variables.

Robust smoothing can be applied to both the obgserved and nonobserved
state variables. The concept of robust statistical smoothing of nonobserved
variables is addressed in Groutaqe1o, where it is applied to the maneuvering
target tracking problem.

Basically, two robust statistical procedures are used for the robust
smoothing of the egtimated state variables:

1) robust measure of spread, and

- " - - L g L PR S S L. - L . e e s
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2) robust measure of location.
Details on these robust statistics are found in Bicke18 and Huber9. The

concepts of using adaptive weights for Kalman filter gain and covariance
matrices are presented in [10].

ROBUST ESTIMATION OF OBSERVED STATE VARIABLES BY USING ADAPTIVE WEIGHTS
FOR GAIN AND ERROR COVARIANCE MATRICES

The concepts presented here are empirical in nature; ie, they are based
on observations and experimental data. An intuitive perception of these con-
cepts can be obtained by examining the Kalman filtering algorithm for a scalar
parameter. Consider the scalar system with process noise w(k)

x(k + 1) = a x(k) + w(k) (17)
and the associated measurements

z(k) = x(k) + v(k). (18)
The covariance associated with the process noise is

2
Blw (k)] = Q (19)

and the measurement noise covariance is

Elv3(k)] = R. (20)

8. Bickel, P. J., One-Step Huber Estimates in the Linear Model, Journal of
the American Statistical Association, vol 70, no 350, pp 428-433, June
1975.

9. Huber, P. J., Robust Estimation of a Location Parameter, The Annals of
Mathematical Statistirs, vol 35, no 1, pp 73-101, March 1964.

10. Groutage, F. D., A, ve oust Sequential Estimation with Application
to Tracking a Maneuv- ..ng Target, PhD Dissertation, Department of Elec-
trical Bngineering, University of Wyowming, May 1982.
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e The noises w(k) and v(k) are zero mean, Gaussian random sequences. The Kalman
filter equations for this scalar case, which formulate estimates of the single

state variable x(k), are:

Propagation Egquations

x(k) = a X(k =~ 1) (21)

Bk) = a’B(k - 1) + Q (22)

Gain Relationship

ctx) = —BLkl | (23)
P(k) + R

Estimation Equations

&(k) = x(k) + c(k)[z(k) = x(k)] (24)

B(k) = [1 - c(k)]P(k). (25)

Equation (26) for estimating the state variable x(k) contains interesting
information concerning the estimation process. Note that the scalar gain,

c(k), is bounded from above and below as

0 < c(k) < 1. (26)

For the case when c(k) = 0, equation (24) indicates that total faith is placed
in the estimation process. In fact, the measurements are ignored and the pre-
vious estimate is the updated estimate. Now consider the case where c(k) = 1.
For this limit, equation (24) indicates that there will be no faith in the
estimation process. In fact, the current measurement for the updated estimate
of the state variable is used. With these concepts in mind, the idea of a

pseudogain, a(k), is investigated. Let

a(k) A 1+ e-B(k)c(k) - e-vB(k) (27)

e v Gt .
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where v and B(k) are parameters to be established and v can be a constant.
The observation residual, y(k), is defined as the difference between the

measurement and the propagated state estimate
y(k) = z(k) - x(k). (28)

Now consider the recursive sample mean of the observation residual sequence
and the recursive sample variance of the residual sequence. Let the sample
space be NL and let §(k) designate the recursive sample mean of the observa-

tion residual sequence; ie,

k

- 1 . .
yik) =5 3 y(3). (29)
L j=k-N,+ 1

2
Let Gyz(k) designate the recursive sample variance (see appendix A) of the

observation residual sequence; ie,

—1— 1yt - ¥01? - fyk - N - F001?
]

1 2
+ Nz {y(k) - y(k - Nn.” }. (30)

If the parameter B(k) of equation (27) is chosen in the following manner

B(k) = yayz(k) ' (31)

then a(k) is a function of the dispersion of the residuals y(k). The value of
the constant, y (a weighting factor), must be determined. Equation (27) is
now interpreted. Note that in the limit as 8(k) + 0, the pseudogain ap-
proaches the Kalman filter gain or

lim alk) = c(k) (32)
8(k)+0
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B and for the limit as B(k) + =

lim a(k) = 1. (33)
B(k)+

Thus for a small dispersion of the residuals, the gain is the optimum Kalman
gain c(k). For a large dispersion of the residuals, no faith is given to the

estimation process.

From practical experiments, it was found that a robust weighting function

for the propagated error covariance P(k) was also required. The modified

error covariance was defined as

fLl

T ey .
AREA

8'(k) = P(k) + £'[1 - o(k)] (34)
where
P'(k) = o(k)P(k). : (35)
-v1GY2(k)
For the scalar case, where o(k) is defined as e .
~v,8 (k) _ a8 %) ~v 3 %0
o'(k) =e 'Y B(x) +e 'Y M-e 'Y . (36)
a.o 2(k)

The quantity, e ! is limited to some a priori upper bound, T. This is

illustrated in figure 3. Note that for a small dispersion of the residuals
[Gyz(k) approaches zero], the modified error covariance 6'(k) of expression

(38) approaches the Kalman propagated error covariance S(x) or

lim 8'(k) = P(K)

5 2(k) » 0 . (37)
y
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Figure 3. Influence curve of sample variance for observation residual.

For the other limit, that is, when the dispersion of the residuals is large
[Gyztk) becomes large], the term 8'(k) approaches the a_priori upper bound, or

lim 0'(k) =T (38)
g 2(k) + @ .
Y

Note that the gain, c(k), is also bounded when the dispersion of the residuals
is large; ie,

T
lim cl(k) = T + R (39)

6 2(k)+ = .
b4

These concepts for the scalar case, robust weighting of the Kalman gain and

error covariance matrices, are expanded to the vector case. Note that for the

scalar case, the gain and covariance matrices are also scalars.
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ADAPTIVE GAIN MATRIX WEIGHTING
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To be ugseful in an adaptive filter, expression (27) must be expanded to

st 508

the vector dynamic case. This is accomplished with the A[K(k)] matrix (for

A

linear measurements or pseudolinear measurements) similar to the a(k) function 9

for the scalar case of equation (27): When the measurements are linear,

A[K(k)] will replace the Kalman gain matrix K(k) in the estimation algorithm.

o e

AN
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A consider a matrix A[(K(k)] defined as

AlK(k)] = [I' + EK(k) - F] (40)

where I', Eand F are n X r, n X n, and n X r matrices, respectively. Recall
that x(k) and z(k) are n X 1 and r X 1 vectors, respectively. The individual
matrices of equation (42) can best be explained through example. Consider the
linear system of figure 4. This system is driven by a deterministic forcing
function, u(t), and process noise, w(t). The output is observed discretely
with a sensor system. The measurements, z(k), made by the sensor are cor-

rupted by a noise sequence v(k). The measurement equation is thus

z(k) = x1(k) + vi(k). (a1)
fsvstem ~ ~ ~ | pm e e e mm e —m =TT 7T
| FORCING with |, i | i
) FUNCTIONS i | vik) |
| o ‘ | |

+
f I l %t s ) Sal 2t |
uit) | 1 1 1 'X >

l i1 s+8 s+b t | +
l 0|l | :
| 1) | |
' ! LINEAR SYSTEM ! | DISCRETE !
I | ORI oA A A1) . | LINEAR |
- J {_MEASUREMENTS d

Figure 4. Linear system example.
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In matrix form,

z(k) = [1 0] x1(k)

xz(k)

+ v(k). (42)

Por this example, the I', E, and F matrices are defined as follows:

= |9 (43)
0
i
£- |em8® 0 (44)
| o
ra [evB0 (45)
0

where 8(k) is as defined in relation (31). It should also be recalled that
for this case the K(k) matrix is a 2 X 1 vector.

ADAPTIVE ERROR COVARIANCE MATRIX WEIGHTING

The equivalent matrix formulation of expression (36) is

8'(k) = P'(k) + P'(I ~I). (46)
Again, the individual matrices of (46) can best be explained through applica-
tion to the linear problem of figure 4. The propagated error covariance
matrix, ;(k), is partitioned into three separate matrices. The following
notation is introduced

P(k) = L(k) + D(k) + V(k) (47)
where L(k) is a lower triangular matrix with zeros on the diagonal, D(k) is a

diagonal matrix, and V(k) is an upper trianqular matrix with zeros on the
diagonal. The S'(k) matrix is defined as

12
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_ P'(k) = V(k) + £ D(k) + L(k) (48)

where the I matrix is a diagonal matrix. The individual elements of the I

2

] vy (k) 2

matrix are of the form e ¥y where Gy is a sample variance of the ith
i

observation residual sequence. For the case when ali state variables are

Q)

measured, then all of the diagonal elements of I would be of the form

2 A
(k) -vi8, )
. The ith diagonal element, zii, is e i « For the

-v,0
e i Yi

problem at hand, where only discrete measurements of the output variable,
“ x1(k), are available

~,3 2(x)
t=|e 'Yy 0 (49)
0 1
and
013 2(k)
P' =| e ' ¥y 0 . (50)
0 1

For a case where measurements of both state varjables, x‘(k) and xz(k),

were available the I and FP' matrices would be as follows:

(51)
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a2
a0 (k)
e ' ¥ 0 (52)
P'= .
A 2
a, 0 (k)
0 e 2 Yy
A an 2
a,8, 2(K) a3, (i)
The quantities e 1 and e y2 would be limited similarly as shown

in figure 3 to upper bounds of T, and T,, respectively. ‘

Both the adaptive Kalman gain and error covariance weighting procedures
were incorporated into the algorithm of equations (5) through (10). It was
determined through experimentation that these robust adaptive procedures were
most effective if they were activated only after the sample variance of the
innovations sequence reached a predetermined threshold level. As a rule of
thumb, the threshold was taken to be one and one-half the anticipated value of
the standard deviation of the observation noise.

ROBUST SMOOTHING

The estimates of the state variables made by the Kalman filter with the
modified gain and covariance matrices contain periodic outliers. This is a
result of the sampling procedure and the way in which the sample statistics of
the innovations sequence are utilized to formulate weights for the elements of
the gain and covariance matrices. To alleviate the outliers in the state
estimates, a robust statistical smoothing procedure was incorporated into the
estimation procedure. The robust smoother uses a regression procedure in the
following manner. Consider n gsamples of estimates of the ith state variable
’?1( k) where the samples are defined as the set

A= {21(k - n-1), ﬁi(k - n), ﬁi(k = nt1), R (K)), (53)
It is desired to find a weighted-least-squares solution for the straight-line

regression fit through the n samples of the estimates of the ith state vari-
able, ?‘i' over the discrete interval spanned from discrete time k-n-1 to




time k. The specific weighted-least-squares solution for the straight-line

regression case (ie, ¥ = BO + B‘ K + E) is given by the formulas

n
E[(wj)(j - ¥R (k- n -3 - ¥

8, - =L — (54)
z: [(Wj)(j - x')"]
j=1
and
Bo = y' - 31 x' . (55)
When n, the sample size, is an odd integer, x' is defined as
;l ’n-n—+—-1+1 (56’
2
and Y is defined as
n
WX (k=-n-3)
_ 1=Z1 W%y »]
Y = a . (57)
W,
>
j=1

The weighting term, wj, which appears in equations (54) and (57), is called
1
the biweight (See Mosteller and Tukey ), which is an abbreviation for bi-

square weight. Observations (meaning a sample of a random variable) are

weighted according to the relationship

(1 - eiz)2 le | <1
We,) = (58)

0 elsewvhere

11. Mosteller, P., and J. W. Tukey, Data Analysis and Regression, Addison-
Wesley Publishing Company, 1977.
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‘.; where
! e, - ¢
: e = A (59)
N i cs
&
N -

and t, is the ith observation with £t the estimate of location based on n

observations,
L N

1);'1[“( e t,)
-3 € = % . (60)
33 W(e,)
g=1 1

A robust measure of scale is defined in [12] as
2t (Interquartile Distance
i s 2(0.6745) (61)

where the interquartile range is defined as the third quartile minus the first
quartile and thus gives the length of the interval in which the middle 50

. percent of the data fall. For samples that arise from Gaussian distributions,
s is an esatimate of ¢, the standard deviation. The valus of the constant c is
arbitrary. To have a feel for the range of the value of ¢, note that with
c= 4

cs = 40. (62)

Discrets values of the weighted-least-squares solution along the regres-
sion line are obtained from the relationship

2°UK) = By * 8, '3 for K= 1, 2, eee, n (63)

12. Launer, R. L., and G. N. Wilkinson, Robustness in Statistics, Academic
Press, New York, 1979.
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where Bo and 8 4 are defined by equations (55) and (54). The vertical dis-
tances from regression line of (63) to individual data points at the n dis-
crete times are called residuals and defined by the relationship

xr(j) = &1 (k = 3 =-1) - %3 for 3 = 1, 2, «.., N. (64)

The above expressions of (63) and (64) are used in formulating the robust
smoothing procedure illustrated in figure 2. This robust procedure is imple-
mented by using the weighted-least~squares solution of (63) to project n - 1
past values of the estimates (as formulated by the adaptive filter) of the ith
state variable up to the present discrete time, t = k. The n - 1 past values
of the estimates of the ith state variable; ie,

{ﬁi(k -n-1), *1 (k = n), <., ﬁi(k - 1)} (65)

are projected to discrete time t = k and define n values of the random vari-
able, ﬁj(k); ie,

§j(k) = ¥(k) + r(j) for 3 = 1, 2, ..., n. (66)
The newly formed random variable, )"ij(k), is smoothed by using the relationship

n (V]

z ijj(k)

R (K = 151;—-—-——- (67)
"

3=1

where &1'( k) is the smoothed value of the estimated value of the ith state
variable as generated by the modified gain and covariance Kalman filter. A
new estimate, at Adiscrets time k+1, of the ith state variable is generated,
ﬁi'(kﬂ), which is subsequently smoothed by means of the above process; how-
ever, the sample space now spans the discrete time interval from time k-n to

time k+1. The sample set A of equation (53) is now defined as

A= (al(u - n), Qi(k - ntl, .. Qi(k + 1)) (68)

18
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A new weighted-least-squares solution for the straight-line regression fit
through the n samples is found and the process repeats as outlined above.

Note that the solution of the nonlinear relationships of (54), (57), and
(67) are obtained from an iterative procedure. Equations (54), (57), and (67)
are nonlinear as a result of the bisquare weight function, W 37 given by the
relationship of equation (60).

SIMULATION RESULTS

The system of figure 4 (with a = 2.0 and b = 3.0) was simulated on a
digital computer; a simulated sensor monitored the output, x,(t) + where the
output was measured discretely in time and corrupted by sensor noise, v(k).
The measurement noise, v(k), was zero mean with a variance of 25. The system
wag driven by a deterministic forcing function u(t). No process noise, w(t),
was added to the system forcing function. The deterministic forcing function
was a pulse with a duration of 22 geconds and a magnitude of 500 units, as
illustrated in figure S. Also shown in figure 5 are records of the values, as
functions of time, of the state variables xz(t) and x1(t). The output x1(t)
was sampled at a rate of five times per second.

4 f SYSTEM FORCING FUNCTION
500 =
400 -
:
Z 200 xq(t)
Qo
200 -
Xy (t)
100 F

2 4 6 8 10 12 114 16 18 20 22 24 26 28 30
TIME, secondh

Figure 5. System forcing function and values of state variables.
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'._-'.'.: A conventional Kalman filter, without any a priori knowledge of the
forcing function, u(t), or the time at which the forcing function was initi-

0

ated, was used to process the measurement data z(k). The conventional Kalman

3
¢ ¢

t‘w:-.-' filter did not detect the influence of the deterministic forcing function on
.'_-,':
Y-jj..\ the state variables, as illustrated in figure 6. Since a priori data dictated
that there was no process noise, the elements of the Kalman filter gain matrix
'-f:'g{ associated with the observed variables approach zero; thus the estimation
A
:»ff: process has severed itgself from the measurement process and ignores new data
';_"::{ brought forth by additional measurements.
. ESTIMATES OF VALUES
% OF STATE VARIABLE
N 4 USING ADAPTIVE FILTER
- 100 r— (NO ROBUST SMOOTHING) TRUE VALUES OF
._:::. % ol y STATE VARIABLE
o a L ‘ " I ’ ' a0 VL ll, pao b
s MWCYMVTTT
o ] ’ ! |
5 3 |
Ol so}
:ord
:d
K 50
sl
3o} ESTIMATES OF VALUES
OF STATE VARIABLE USING
20} CONVENTIONAL NONADAPTIVE
KALMAN FILTER
10}

R Y L B N B LR R T
h TIME, seconds

Figure 6. Estimation using adaptive Kalman filter without robust

smoothing compared to estimation using nonadaptive conventional
Kalman filter.

When the elements of the Kalman filter gain and covariance matrices are
weighted by the adaptive procedure outlined above (sample statistics of the
innovations ssquence are used to adapt the respective weights), the filter no
longer divorces itself from the measurement process. Additional data brought
forth by the measurement process are used to update the estimates of the state
variables. This is illustrated in figure 6. However, since the adaptive
procedure uses sample statistics, the estimates contain periodic outliers.
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The filter will run for a period of time, then monitor the innovations se-
quence to update the adaptive weights. It is this monitoring of the innova-
tions ssquence to obtain new information which causes the periodic outlier to
appear in the estimates. The subsequent processing of the adaptive estimates

by a robust smoother reduces the level of mean square error and the periodic
outliers.

The smoothed estimates of the measured output state variable, x1(k), are

shown in figure 7. Figure 8 presents an overlay of the records of figures 6
and 7 over a 5-second expanded time interval.

CONCLUSIONS

State variable estimation in the presence of unknown a priori system
information (noise statistics, forcing functions, and system dynamics) is not
an easy problem. There are no clear-cut solutions. This paper addresses only
one of the above problems (no information about the system deterministic
forcing functions). The concepts presented relative to this particular prob-
lem address the limited class of linear system dynamics with associated linear
measurements. Nonlinear system dynamics with associated linear measurements,
however, are not precluded.

Estimates of the state variables using the adaptive process for the
system during the periods when the system is not being forced are relatively
close to those of the conventional Kalman filter for congruent periods, but
there is some degeneration because the estimator is no longer optimal. During
the periods when the system is being forced, a vast improvement, as compared
with those estimates of the conventional Kalman filter, is realized with the
adaptive gain, covariance weight, and associated robust smoothing procedure.
The estimates derived with the adaptive procedure during the periods of system
forcing do, however, contain a considerable level of mean-square error. This
seems to be a prevailing shortfall of adaptive estimation procedures. The
tradeoff is knowing more about the values of the state variables (less mean

6rror) against more mean square error in the respective estimates.
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Figure 7. Estimation using adaptive Kalman filter with robust smoothing.

WITH ROBUST SMOOTHING

L

8 10 12 14 16 18 20 22 24 2% 28 30

D

TIME, seconds

WITHOUT ROBUST
SMOOTHING

10.0 10 120 13.0 14.0 15

Figure 8. Comparison of filtering techniques with and without robust smoothing.
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APPENDIX A
DERIVATION OF RECURSIVE ESTIMATORS FOR SAMPLE STATISTICS

Presented in this appendix, the derivations of the recursive estimators

for the sample mean and sample variance based on Nl observations.

RECURSIVE SAMPLE MEAN

The expression for the recursive estimator for the sample mean at time

tk-1 is
1 k=1
n(k - 1) = N 2 n(j). (A.1)
] J=k-N£

The expression for the recursive estimator for the sample mean at time t .-

k

Alk) = ;—- ; n(j). (A.2)
L 37k-n, +1

Equation (A.1) is subtracted from (A.2) to give

X k=1
R - 1 . .
Alk) = Ak = 1) = o= [ > n(j) - ) n())]. (A.3)

3=k=N, +1 j=k=N

When the terms under the summation of (A.3) are expanded out and appropriate
cancellations take place, the recursive estimator for the sample mean at time

tk is given as

nlk) = n(k - 1) + - {n(k) = n(k = N, )] (A.4)
Nl L
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RECURSIVE SAMPLE VARIANCE

The expression for the recursive estimator for the sample variance at

time tk is

2 1 X 2
3 (k) = — )N IS PR T390 Bt (A.S)
n N -1
L j-k-Nl+1

Equation (A.5) is rewritten as

- 2 ‘ ~ 2 ~ 2
o, (k) = ﬁ::T {({n(k) - n(k)]" - [n(x = Nl) - n(k))
k-1 2
+ 2 (n(3) - A(x))°). v (A.6)
J=k-N,

When the expression for the sample mean, (A.4), is substituted into the summa-

tion term of the above expression, (A.6), it can be rewritten as

6 %(x) =« — ((n(x) - ﬁ(k)lz - [n(k - N,) = a(xn’
n Nl-1 L
k-1 ; 2'
o X ) - Ak = D)= == (atk) - ik - 80) 15 (A7)
=k-N, L
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E.': Expanding the terms under the summation gives

Snz(k) = —1 ((n(k) = A1 = (n(k - N, - A0

N, -1
k=1 5 5
. }E ((nt3) = Atk = 1)° = &= (n(3) - Alk=1))
j=k-N, t
- 1 n 2
(ntl) - (k=N ))+ ] (nex) = Alk=N)) )} (A.8)

L

The cross terms under the summation of the above expression of (A.8) can be

shown to be zero, thus,

8 2(k) = —1= (tntk) - (k)12 - (nek - §,) - ACk)) *
n ll‘-‘l L
k-1 2 2
+ Y e -dxk-n) e ;—E(n(k) - AN )Ny (A.9)
y=x-N, * L

Note that by definition

k=1

5 2k-1) = 2 (a(3) - Ak - N1 (A.10)
n
3=k-N,

~ thus, the recursive estimator for the sample variance is

] 2(k) =9 2(k - 1) + - {In(k) = n(ﬁ)l2 - In(x - N_)
n n t

-1
Nl

~ ’
-n(k)lz*"—'(n(k) -n(k-Nt)JZ). (A.11)
)
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